A Study of Qso Evolution in the X-ray Band with the Aid of Gravitational Lensing
نویسندگان
چکیده
We present results from a mini-survey of relatively high redshift (1.7 < z < 4) gravitationally lensed radio-quiet quasars observed with the Chandra X-ray Observatory and with XMM-Newton. The lensing magnification effect allows us to search for changes in quasar spectroscopic and flux variability properties with redshift over three orders of magnitude in intrinsic X-ray luminosity. It extends the study of quasar properties to unlensed X-ray flux levels as low as a few times 10erg cm s in the observed 0.4–8 keV band. For the first time, these observations of lensed quasars have provided medium to high signal-to-noise ratio X-ray spectra of a sample of relatively high-redshift and low X-ray luminosity quasars. We find a possible correlation between the X-ray powerlaw photon index and X-ray luminosity of the gravitationally lensed radio-quiet quasar sample. The X-ray spectral slope steepens as the X-ray luminosity increases. This correlation is still significant when we combine our data with other samples of radio-quiet quasars with z > 1.5, especially in the low luminosity range between 10–10 erg s. This result is surprising considering that such a correlation is not found for quasars with redshifts below 1.5. We suggest that this correlation can be understood in the context of the hot-corona model for X-ray emission from quasar accretion disks, under the hypothesis that the quasars in our sample accrete very close to their Eddington limits and the observed luminosity range is set by the range of black hole masses (this hypothesis is consistent with recent predictions of semi-analytic models for quasar evolution). The upper limits of X-ray variability of our relatively high redshift sample of lensed quasars are consistent with the known correlation between variability and luminosity observed in Seyfert 1s when this correlation is extrapolated to the larger luminosities of our sample.
منابع مشابه
Ray-tracing and Interferometry in Schwarzschild Geometry
Here, we investigate the possible optical anisotropy of vacuum due to gravitational field. In doing this, we provide sufficient evidence from direct coordinate integration of the null-geodesic equations obtained from the Lagrangian method, as well as ray-tracing equations obtained from the Plebanski’s equivalent medium theory. All calculations are done for the Schwarzschild geometry, which resu...
متن کاملEffects of Dust on Gravitational Lensing by Spiral Galaxies
Gravitational lensing of an optical QSO by a spiral galaxy is often counteracted by dust obscuration, since the line-of-sight to the QSO passes close to the center of the galactic disk. The dust in the lens is likely to be correlated with neutral hydrogen, which in turn should leave a Lyα absorption signature on the QSO spectrum. We use the estimated dust-to-gas ratio of the Milky–Way galaxy as...
متن کاملDetection of the Galaxy Lensing the Doubly–imaged Quasar Sbs 1520+530
H band observations with a spatial resolution of 0. 15 carried out with the Canada-France-Hawaii Telescope adaptive optics system show a galaxy between the components of the double BAL QSO SBS 1520+530, thereby confirming this system as a gravitational lens. The galaxy is located 0. 40 from the fainter of the two QSO images and is offset 0. 12 from the line joining them. The H magnitude of the ...
متن کاملDetection of the Galaxy Lensing
H band observations with a spatial resolution of 0: 00 15 carried out with the Canada-France-Hawaii Telescope adaptive optics system show a galaxy between the components of the double BAL QSO SBS 1520+530, thereby connrming this system as a gravitational lens. The galaxy is located 0: 00 40 from the fainter of the two QSO images and is ooset 0: 00 12 from the line joining them. The H magnitude ...
متن کاملThe effect of time and Co2+ dopant on phase evolution, microstructure and optical properties of CuInS2 nanoparticles synthesized by hydrothermal method
In this research, with use of copper chloride, indium chloride, Thiourea (source of sulfur) and deionized water as solvent, using hydrothermal method at 180 ° C and at time of 4, 6, 8, 12, 14, 16, 18 and 20 hours, the composition of CuInS2 nanoparticles was synthesized by Stoichiometric ratio of (1: 1: 2), and in the next step, this compound (CuInS2 ( with cobalt additive at 180 ° C and at tim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004